Unsere Freiwilligen haben diesen Artikel noch nicht in Deutsch übersetzt. Machen Sie mit und helfen Sie, das zu erledigen!
The CanvasRenderingContext2D
.quadraticCurveTo()
method of the Canvas 2D API adds a quadratic Bézier curve to the path. It requires two points. The first point is a control point and the second one is the end point. The starting point is the last point in the current path, which can be changed using moveTo()
before creating the quadratic Bézier curve.
Syntax
void ctx.quadraticCurveTo(cpx, cpy, x, y);
Parameters
-
cpx
- The x axis of the coordinate for the control point.
-
cpy
- The y axis of the coordinate for the control point.
-
x
- The x axis of the coordinate for the end point.
-
y
- The y axis of the coordinate for the end point.
Examples
Using the quadraticCurveTo
method
This is just a simple code snippet drawing a quadratic bezier curve. The control point is red and the start and end points are blue.
HTML
<canvas id="canvas"></canvas>
JavaScript
var canvas = document.getElementById("canvas"); var ctx = canvas.getContext("2d"); ctx.beginPath(); ctx.moveTo(50,20); ctx.quadraticCurveTo(230, 30, 50, 100); ctx.stroke(); ctx.fillStyle = 'blue'; // start point ctx.fillRect(50, 20, 10, 10); // end point ctx.fillRect(50, 100, 10, 10); ctx.fillStyle = 'red'; // control point ctx.fillRect(230, 30, 10, 10);
Trying the quadraticCurveTo
parameters
Edit the code below and see your changes update live in the canvas:
Specifications
Specification | Status | Comment |
---|---|---|
WHATWG HTML Living Standard The definition of 'CanvasRenderingContext2D.quadraticCurveTo' in that specification. |
Living Standard |
Browser compatibility
Feature | Chrome | Firefox (Gecko) | Internet Explorer | Opera | Safari |
---|---|---|---|---|---|
Basic support | (Yes) | (Yes) | (Yes) | (Yes) | (Yes) |
Feature | Android | Chrome for Android | Firefox Mobile (Gecko) | IE Mobile | Opera Mobile | Safari Mobile |
---|---|---|---|---|---|---|
Basic support | (Yes) | (Yes) | (Yes) | (Yes) | (Yes) | (Yes) |
See also
- The interface defining it,
CanvasRenderingContext2D
- WikiPedia article on Bézier curves.